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Final Report 
 
(1) Foreword 
 
 This progress report summarizes two types of work.  In the first part of our study, 
we performed experimental analysis of the underlying cortical circuitry required to 
analyze objects moving across the skin.  In the second part of the study, we applied the 
metrics that we obtained to a biologically faithful model and showed that this model was 
extremely efficient at detecting objects within natural cluttered scenes.   
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(4) Statement of the problem studied. 
  
 The specific aim of this project was to test the hypothesis (through parallel neurophysiological 
experiments and neural network modeling simulations) that perceptual mislocalization of a moving tactile 
stimulus arises from a systematic misrepresentation of stimulus location on the skin by primary 
somatosensory cerebral cortex (SI).  Experimentally, SI cortical experiments substantiated the original 
hypothesis by demonstrating that the pattern of neural activity evoked in SI cortex by a moving skin stimulus 
varies with stimulus velocity in a manner paralleling that of perception.  In the modeling studies, a novel 
model of synaptic input integration by dendrites of cortical pyramidal cells was developed which enables 
cells to tune to higher-order stimulus features.  Studies with the model also supported the original 
hypothesis. Additionally, this network model was tested for its ability to extract higher order features of 
sensory input patterns, and it was shown to be very successful at extending current techniques of nonlinear 
factor analysis.  In this progress report, we demonstrate its use in automatic target recognition, or more 
specifically, in recognizing military vehicles in real-world settings. 
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(5) Summary of the most important results. 
 
I.  Biological findings. 
 
An object’s motion has prominent and diverse effects on its perceived position. For example, at 
high velocities of skin brushing stimulation, both the first and the last skin points contacted by the 
brush are perceived to be shifted in the direction of brush motion, and the skin path taken by the 
brushing stimulus is perceived to be much shorter than it really is (Whitsel et al., 1986). In vision, 
such effects of stimulus velocity on the perceived positions of the start and end points are known 
as Frohlich and Flash-Lag Effects, respectively (Whitney, 2002). 
 
To explore the neural bases of these prominent perceptual phenomena, response of the primary 
somatosensory cortex (SI) to skin-brushing stimulation was studied in monkeys using the 
methods of near-infrared optical intrinsic signal (OIS) imaging of SI stimulus-evoked activity and 
extracellular recording of the spike discharge activities of SI neurons. OIS findings clearly show 
that the spatial distribution of the optical response in SI is velocity- and direction-dependent: (1) 
the region of SI activation is much smaller at 100-200cm/sec than at 10-50 cm/sec; and (2) at 
higher stimulus velocities the optical response shifts its location in SI in the direction of stimulus 
motion.  In Figure 1 below, the difference in the optical responses to flutter at two locations versus 
a stimulus moving across the 2 points on the skin is shown.  When the moving stimulus travels 
between two points on the skin at a relatively low velocity (5 cm/sec in this example), it activates 
a fairly large region of SI cortex.  When the same stimulus is sped up (to 200 cm/sec), activation 
is observed most prominently in the cortical region that corresponds with the skin region that the 
stimulus is moving towards (thus, this figure demonstrates that the response of SI cortex is both 
velocity and direction dependent). 

Figure 1.  Imaged response of moving stimulus. 
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Cutaneous mechanoreceptor afferents were found to respond to low- and high-velocity skin-
brushing stimulation with spike discharges that occurred at virtually the same brush positions, 
thus indicating that the velocity-dependent shift of OIS response in SI must have central origins. 
Among SI neurons, at high brushing velocities 50% of neurons in areas 3b and 1 (Group I) 
showed a significant displacement of stimulus-evoked firing to later positions along the stimulus 
path, but this shift, however, is attributable simply to the conduction delay of on average 20 msec 
between the skin and the SI cortex. The other 50% of neurons in areas 3b and 1 (Group II) were 
more interesting: although the ON-edge of their response profile also shifts with stimulus velocity 
due to 20 msec latency, the OFF-edge of their response profile is mostly velocity-invariant; or, 
more precisely, it follows a shallow U-shaped course as velocity is increased from 1 to 
250cm/sec, remarkably similar to the behavior of the perceived locus of the final position of the 
brushing stimulus in the human tactile psychophysical studies.  In another close parallel to 
psychophysics, the length of the response profile of Group II neurons shows the same 
dependency on brushing velocity, as does the perceived length of skin brushed by a stimulus.  
Both curves are remarkably similar in their decline at velocities from 1 to 5cm/sec, plateau 
between 5 and 30cm/sec, and another decline at velocities above 30cm/sec. 

In conclusion, the similarity of effects of stimulus velocity on the response of Group II neurons in 
SI and on perceived stimulus position in human psychophysics suggests that the perceptual 
distortions of a brushing stimulus position on the skin have their neural counterparts in the 
distortions of the SI representation of the position of such a stimulus. At the same time, the 
existence of Group I neurons in SI suggests that these neural correlates of psychophysics are not 
a universal property of all SI neurons.  

 
II.  Computational Findings  
 
As a part of this ARO-funded research project (P-43077-LS; Tommerdahl, P.I.), we have 
developed a computational ‘SINBAD’ model of how cerebral cortical neurons learn to recognize 
higher-order features in their sensory environments (Ryder and Favorov, 2001; Favorov and 
Ryder, 2004; Favorov et al., 2003).  This work led us to formulate a novel computational 
‘SINBAD’ algorithm that significantly extends current techniques of nonlinear factor analysis 
(Kursun and Favorov, 2004a). To demonstrate the analytical powers of this algorithm, we have 
successfully applied it to computer-science problems of super-resolution and human face 
recognition (Kursun and Favorov, 2003, 2004b).  We are also currently applying a version of this 
algorithm (called ‘Virtual Scientist’; Kursun and Favorov, 2004a) to metabolomics, a field in 
functional genomics. Another challenging, but potentially valuable practical application of the 
SINBAD algorithm, suggested by Dr. Schmeisser, is to use it in automatic target recognition, such 
as, for example, recognizing military vehicles in real-world settings.  This paper is a report of our 
initial progress on such a target-recognition task. 
 
 
Approach 
 
 The study was carried out on the TNO-TM Search_2 dataset of 44 high-resolution 
photographs of cluttered rural scenes containing 9 types of military vehicles (Toet et al., 1998).  
24 of those images were used to train our procedures.  10 other randomly chosen images were 
used to test their performance after training. Our approach is based on a hierarchical iterative 
procedure that involves: (1) learning SINBAD features characteristic of the kinds of patterns 
encountered in the database images and using these features to identify possible target 
locations, (2) developing additional SINBAD features specifically of such ‘suspicious’ locations 
and using these specialized features to narrow-down the set of possible target locations, (3) 
developing another set of even more specialized SINBAD features on this narrowed-down set of 
locations and using them to further reduce the number of false detections, and so on. 
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 SINBAD features are learned by a network of SINBAD cells.  Each cell implements a 
machine-learning algorithm designed to extract mutual information from different, but related sets 
of inputs (Favorov and Ryder, 2004; Kursun and Favorov, 2004a).  Applying this algorithm to our 
target recognition problem, we use it to learn various characteristic types of local structures 
present in natural landscape images.  Such local structures are distinguished by certain degrees 
of internal redundancy and this redundancy is used by SINBAD neurons both to discover such 
structures and to learn to distinguish among their different categories. 
  
 To make a decision on whether a given image location contains a target (a vehicle), we 
use a Support Vector Machine (SVM; Scholkopf and Smola, 2002).  SVMs have an important 
advantage over other types of classifiers in that they can be successfully trained even on very 
limited numbers of training samples (and even when input vectors are very high-dimensional, 
which is our case), avoid over-fitting, have excellent generalizing abilities, and converge very 
quickly. The essential features of our approach are illustrated in Figure 2.  The first SVM (SVM1) 
is trained to respond positively when its small viewing window is placed over a military vehicle in 
any given training image.  Of course, as can be expected, this SVM fails to learn this 
classification task perfectly: in order to avoid missing any vehicles, it incorrectly responds to views 
of nature as if they contained a vehicle on 0.35% of trials. We use SVM1 for an initial search of a 
given full-size image: we scan the SVM viewing window over the entire image and select for 
further analysis those locations where SVM1 responded positively.  By doing this, we quickly 
discard 99.65% of locations in the image as of no interest.  However, we are still left with a large 
number of locations that might contain a target. 
  
 For the second stage, we develop SINBAD features using only those image locations that 
were identified as ‘suspicious’ by SVM1.  For this report, we used a network of 14 SINBAD cells 
(‘SINBAD Network 1’ in Figure 2).  Each cell learns a different feature within the same 5x5 pixel 
viewing window.  Together, the outputs of these SINBAD cells represent the image content of a 
5x5 pixel window by a vector in a 14-dimensional ‘feature’ space.  SINBAD features, in turn, are 
used as inputs to the second SVM (SVM2 in Figure 2). SVM2 is trained to recognize the presence 
of a vehicle within a 20x20 pixel window.  During training, the window is placed only at those 
image locations that were marked as ‘suspicious’ by SVM1.  SVM2 greatly reduces the number of 
False Positives that were made by SVM1 – currently by a factor of 20 – without missing any of the 
real vehicles in the test images.  Thus, a sequence of SVM1 and SINBAD-SVM2 in our 
experiments so far was able to detect all the test vehicles while making False Positive mistakes 
on only 0.015% of the test trials. 
  
 These False Positives can be reduced further by one or more additional SINBAD-SVM 
stages (one such stage is shown in Figure 2).  At each stage, SINBAD features can be developed 
specifically for those image locations that were considered suspicious by the preceding stages of 
the analysis.  Such specialized SINBAD features will exhibit progressively greater discriminative 
sensitivity to image details specific to the ‘suspected’ (i.e., containing a vehicle or not yet ruled 
out) image locations.  The enhanced sensitivity, in turn, can enable the next SVM to improve its 
classification performance, further reducing the numbers of False Positives. 
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Results 

 
Figure 3 shows the outcomes of the first two stages of vehicle detection performed on one of the 
dataset images.  This image was not used in either SVM1 or SINBAD or SVM2 training, but was 
reserved for testing the performance of those algorithms after their training.  The local windows 
shown in the bottom two panels indicate image locations at which SVMs signaled the presence of 
a vehicle. 
  
As shown in the third panel, in stage 1 SVM1 correctly signaled the location of a tank in the 
image.  However, it also signaled 155 other locations, which did not contain any vehicles (False 
Positives).  In stage 2, 153 of these 155 False Positive locations were correctly discarded by 
SVM2 (see the bottom panel).  SVM2 identified 8 locations in the image as possibly containing a 
vehicle, 6 of them correctly (covering different parts of the same tank) and only 2 incorrectly. 
Thus, Figure 3 demonstrates the effectiveness of our approach of developing specialized 
SINBAD features of suspected image locations and training a new SVM on those features in 
greatly reducing the numbers of False Positives without reducing the ability to find the true 
targets. 
  
Figure 4 shows suspected vehicle locations identified by SINBAD-SVM2 in six other test images.  
Each panel shows (1) a part of the original image, (2) suspected vehicle locations (small 
squares), and (3) a view in which the suspected locations and their surroundings are highlighted 
to make clearer the landscape structures that were mistaken by SVM2 for a vehicle.  Visual 
inspection of those structures shows that most of the mistaken structures do not look like vehicles 
(e.g., tree trunks or branches), which suggests that it should be possible for the next-stage 
SINBAD-SVM to learn to correctly interpret such structures as non-targets.  
  
Interestingly, according to Toet et al. (1998) human observers had difficulties finding a vehicle in 
database image 11 (top-left panel in Figure 4), with 18 out of 62 observers failing to find it.  Image 
11 was one of our test images and, in a favorable contrast, SVM2 had no difficulties detecting this 
target and, furthermore, without generating many False Positives.  This superior performance 
was repeated on database image 2 (top-right panel in Figure 4), which was also difficult for 
human observers (16 out 62 failed).    

 
 

In conclusion, we believe that the already impressive vehicle-detection performance achieved so 
far by the SVM1-SINBAD-SVM2 sequence can be raised even much higher by incorporating 
additional developments in future research studies into our set of image analysis procedures.       
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FIGURE 3 
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